Improving cognition in people with schizophrenia: Medication, physical exercise, cognitive remediation, and functional skills training

Douglas L. Noordsy, M.D.
Associate Professor of Psychiatry
Director of Psychosis Services
Investigator, Psychopharmacology Research Group
Geisel School of Medicine at Dartmouth

Learning Objectives

• Identify cognitive deficits commonly present in people with schizophrenia
• Review medication approaches to cognitive symptoms of people with schizophrenia
• Review brain responses to physical exercise, and improvement in cognitive function
• Clinical experience in supported employment and education
• Review evidence on cognitive remediation

Neurobiology of Schizophrenia

• Neurodevelopmental dysregulation
• Neurodegeneration
• Regional brain volume changes
• Reduced neuronal connectivity
• Cognitive symptoms typically present early

Schizophrenia: Ventricular Enlargement
Suddath et al 1989 Monozygotic Twin Study

Dendritic Spine Reduction in Schizophrenia

Dendritic spines: area 46
Non-schizophrenic individual
Schizophrenic individual #1
Schizophrenic individual #2

Symptom Clusters in Schizophrenia

• Psychotic (positive)
• Disorganized
• Negative (deficit)
• Cognitive
• Mood

Cognitive Symptoms of Schizophrenia

- Working memory
- Vigilance and attention
- Verbal learning and memory
- Visual learning and memory
- Reasoning and problem solving
- Speed of processing
- Social cognition

Assessment of Cognitive Symptoms

- Distinguish symptoms from side effects
- High antipsychotic dose associated with cognitive impairment
- Anticholinergics, antiepileptics
- Distinguish cognitive symptoms from distraction by psychosis or loss of initiative
- Evaluate impact on functioning
- Evaluate coping strategies

Pharmacologic Approaches to Cognitive Symptoms

- Antipsychotic medication
- Specific medication for cognition
- Nutrition and supplements
- Targets:
 - Dopamine
 - Acetyl Choline
 - Norepinephrine
 - Glutamate

Dopamine Circuits in People with Schizophrenia

Global Neurocognitive Improvement

- OLZ > CLZ & HAL
- RSP > HAL
- OLZ: improved general and attention
- RSP: memory (> CLZ & HAL)
- CLZ: improved motor domain

CATIE Cognition Outcomes

- Modest improvements in cognitive measures
 - Risperidone: $z = 0.26$ ($P < 0.001$)
 - Perphenazine: $z = 0.25$ ($P < 0.001$)
 - Quetiapine: $z = 0.18$ ($P < 0.001$)
 - Olanzapine: $z = 0.13$ ($P < 0.002$)
 - Ziprasidone: $z = 0.12$ ($P < 0.06$)
- 2 and 6 months: No significant differences
- 18 months: PPZ > OLZ, RSP

Model Pharmacology for People with Schizophrenia

Antipsychotic medication
+ Anti-negative symptom medication
+ Pro-cognitive medication

Medication Trials for Cognition

- Atomoxetine
- Memantine
- MK-0249 (H3 inverse agonist)
- Nicotine
- Oxytocin
- Glutamate modulators
- Lurasidone
- Donepezil
- amphetamines

Subjective Responses to Exercise

- Clear thinking
- Improved mood, energy, concentration
- Improved sleep
- Wellbeing
- Reduced substance use
- Higher functioning
- Independent motivation
- Spontaneous exercisers study

Trials Evaluating the Effect of Exercise on Cognition

<table>
<thead>
<tr>
<th>Author</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Uffelen et al</td>
<td>Supervised aerobic walking vs supervised flexibility classes for 1 year</td>
<td>Improved memory in subgroup with good adherence</td>
<td>Included vitamin B substitution, no effect for vitamin B</td>
</tr>
<tr>
<td>Lautenschlager et al</td>
<td>Moderate-intensity walking vs health education for 6 months</td>
<td>Delayed recall and whole ADAS Cog significantly improved</td>
<td>18-month followup, patients with subjective complaints</td>
</tr>
<tr>
<td>Baker et al</td>
<td>Two types of aerobic exercise (eg, treadmill, bicycling) vs stretching and balancing exercises for 6 months</td>
<td>Executive functioning in women, less than in men</td>
<td></td>
</tr>
<tr>
<td>Baker et al</td>
<td>Two types of aerobic exercise (eg, treadmill, bicycling) vs stretching and balancing exercises for 6 months</td>
<td>Executive functioning</td>
<td>Subgroup of participants with impaired glucose tolerance</td>
</tr>
<tr>
<td>Anderson-Hanley et al</td>
<td>Chair and standing exercises with small weights (non-aerobic) vs wait list for 4 weeks</td>
<td>Improved working memory and executive function</td>
<td>Small group</td>
</tr>
<tr>
<td>Schwenk et al</td>
<td>Dual task-based exercise training vs unspecific low-intensity training for 13 weeks</td>
<td>Improved dual task performance</td>
<td>Impaired patients with mild to moderate dementia</td>
</tr>
<tr>
<td>Erickson et al</td>
<td>Supervised aerobic walking vs unsupervised stretching and toning for 1 year</td>
<td>Increased hippocampal volume + improved spatial memory</td>
<td>Followup 1-2 years</td>
</tr>
<tr>
<td>Yagüez et al</td>
<td>Movement training vs standard care for 6 weeks</td>
<td>Improved memory tasks</td>
<td>Pilot study, tested directly after intervention ended</td>
</tr>
</tbody>
</table>

Association Between APOE Status and Exercise Engagement for the Mean Cortical Binding Potential

Exercise in Schizophrenia

- Benefits for comorbidities
- Metabolic benefits
- Core symptoms (psychosis, deficit)
 - Growing evidence
- Cognition
 - Growing evidence
Exercise Capacity and Symptom Severity

- 93 inpatients with schizophrenia
- Functional exercise capacity: 6-minute walk test
- Positively correlated: GAF
- Negatively correlated:
 - Negative symptoms
 - Depression
 - Cognitive symptoms
 - BMI
 - Smoking
 - Dose of antipsychotic medication

Vancampfort et al., Acta Psychiatr Scand. 2012 May;125(5):382-7

Effect of Exercise on BDNF

- 33 outpatients with schizophrenia in Taiwan
- Behavioral weight loss program
 - Physical exercise
- 10 weeks
- Significant increase in serum BDNF levels

Kuo et al., Psychiatry Res. 2012

Effects of Exercise on Hippocampal Plasticity

- Cycling (aerobic exercise) vs foosball (control) x 3 months
- 8 healthy controls: +16% hippocampal vol with exercise
- Male outpatients with schizophrenia
 - 8 aerobic: +12% hippocampal vol, +35% metabolic activity
 - 8 sedentary: -1% hippocampal vol
- Hippocampal vol x ↑ V̇O₂max (P<0.003)
- Hippocampal vol x ↑ short-term memory (P<0.05)
- Negative and cognitive symptoms improved in the group with schizophrenia who exercised

Pajonk F-G et al. Arch Gen Psychiatry. 2010;67(2):133-143.

Effects of Exercise on Brain Volumes

- 63 people with schizophrenia, 55 controls
- Aerobic/strength training vs. OT
- Twice/week x 6 months
- PANSS total and positive, disorganization, excitement and emotional distress factors improved in the group with schizophrenia who exercised
- Cardiorespiratory fitness improvement:
 - Increased grey matter volume and reduced ventricular volumes in patients
 - Thickening cortex in left frontal, temporal and cingulated areas in patients and controls

How Does Exercise Exert Beneficial Effects?

- Neurotransmitter effects
 - Endorphins, endocannabinoids (AEA)¹
 - Norepinephrine, serotonin, dopamine²
- Neurotrophic effects
 - BDNF¹
- Glycogen storage in astrocytes
 - Frontal cortex + hippocampus³
- Tighter glucose regulation⁴

Review: Brain Effects of Exercise

- Improved perfusion
- Neurotrophin release – BDNF
- Neurogenesis - hippocampus
- Neuproliferation
- Neurotransmitter release
- Immunoinflammatory
- Insulin sensitivity

BDNF, brain-derived neurotrophic factor
Exercise Recommendations for Psychiatric Care

- Consider current capacity
- 30 to 60 min, 3 to 7 days/week
- More is better, to a point
- Mix strength and aerobic
- Intensity: 60% to 85% HRmax (220 - age)
- Have client choose activity
 - Access, cost, familiar, enjoyment
 - Variation vs. repetition

Case Example: Exercise and Cognition

- 22-year-old male, schizophrenia
- Randomized to clozapine, 75 mg/day → remission
- 25 lb early weight gain
- Running, health club - triathlon
- Complete reversal of weight gain
- Remission from substance abuse
- Full-time work
- Full time college

Supported Employment & Education

- Individual Placement and Support
- Competitive job placement
- Workplace skills

Subjective Responses to Work & School

- Pride & self-esteem
- Hope
- Reason to be well
- Access to social networks
- External anchor for attention
- Cognitive challenges
- Meaningful roles & responsibilities - recovery

Cognitive Remediation

- Paper & pencil
- Computerized
- 80 hrs, 3-4 hrs/week
- Neurocognition, social cognition
- Drill & practice
- Strategy teaching
- Methods to address beliefs and motivation

Cognitive Remediation + Functional Adaption Skills Training

- N = 114
- 12 weeks CR v. 12 weeks ST v. 12 wk CR + 12 wk ST
- CR – improved neurocognition but not real world behavior
- ST – improved social competence but not neurocognition
- CR + ST
 - greatest ↑ functional competence
 - Significant ↑ community & household activities and work skills
 - NNT = 3 improved functional skills

Cognitive Remediation

• Improves cognitive domains and social adjustment
• Interventions integrating range of cognitive skills
• CR + CBT and/or group particularly effective
• Integration with psychosocial rehab enhances functional outcomes

Summary

• Cognitive deficits are common in people with schizophrenia and drive functional impairment
• Medication trials disappointing to date
 • others in development
• Physical exercise promising
• Supported employment and education clinically helpful
• Cognitive remediation demonstrating positive effects

Contact

• Douglas.L.Noordsy@Hitchcock.org
• 603-650-4725