

Flame Height and Heat Release Rates at Ignition Phase

Andrew Cilento (Chemistry '18), Dr. Nicole Eyet, Dr. William Ryerson

Introduction:	Resu
• Fire is considered to be unpredictable, which	• The
can prove problematic for fire/arson	ign
investigations	• Z _f =
• Heat can transfer through three major ways,	• Z_f :
conduction, convection, and radiation	• Q =
• Oxygen flow can be restricted to a fire when a	• D =
flame is placed against a wall or in a corner	• The
 Environmental conditions like humidity, wind 	dif
gusts, and temperature impact fires	fou
• Fire is controlled predominantly by the fire	Graph
triangle: oxygen, fuel, and heat	40
• This is an investigation on how fire behaves in	35 ———
its early stages and how different factors	30 ———
impact the height of the flame	Ê 25
	(E) 25 B) 14 E) 20
Experimental:	H 20 H 20 H 20 H 20 H 20 H 20 H 20 H 20
 Pools of acetone were placed in small crucibles 	<u> </u>
and were lit in different corner angles: 90°, 135°,	10 ——
and 180°, and different environmental	5
conditions 3°C, 12°C, 19°C	0

- This was done five times for each angle
- During the first minute of ignition phase, a camera captured the whole crucible and the height of the flames
- For the Heskestad equation: A crucible filled with acetone was placed on a scale attached to a Vernier device, and the acetone was ignited, the loss was mass was measured due to burning

Acknowledgements:

- I would like to thank Dr. Eyet and Dr. Ryerson for their help, support, and use of their cameras,
- I would also like to thank Douglas Brown for the free usage of his tracker software

alts:

he Heskestad equation is used to predict the flame heights at nition phase based on the size of the pool of acetone

- $=0.23Q^{2/5}-1.02D$
- = visible flame height (m)
- = heat release rate (kW)
- = diameter of the pool (m)

e data collected from all the data points of the flame heights for the ferent angles on the different with the Heskestad equation are und on <u>Graph 1</u>

• The modified Hekestad equation accounts for the angle of the wall that the pool of acetone was placed next to

• <u>Graph 2</u> includes the same data collected however it is compared to the modified Heskestad equation • $Z_f = 0.17 (kQ)^{2/5}$

Discussion and Error Consideration:

- Each of the trials contains at least 500 data points of the flame heights measured from Tracker from 5 trials for each angle and ambient temperature
- Based on the two graphs, the unmodified Heskestad equation seems to fit the data more closely
- There is a trend that the colder the weather, the higher the flame heights during ignition phase are
- There is another trend that smaller the angle of the corner, the higher the flame height appears to be
- All of the values are lower with the modified equation and only one value overlaps with the unmodified equation
- Standard errors are included in the graphs
- Acetone pool size and mineral fiber boards were kept constant
- Wind gusts and other weather factors may have added to error
- Human error in calibration of Tracker software was determined to be ± 0.5 cm

References:

1. Office of Justice Programs. A Guide for Investigating Fire and Arson.

https://www.nij.gov/topics/law-enforcement/investigations/crime-scene/guides/firearson/Pages/welcome.aspx (accessed 11/25/2017).

2. DeHaan, J. D., Kirk's Fire Investigation. Sixth Edition ed.; Julie Levin Alexander: Upper Saddle River, New Jersey, 2007.

3. Bonsor, K. Weather's Role in Wildfires. <u>https://science.howstuffworks.com/nature/natural-</u> disasters/wildfire2.htm (accessed 11/25/17).

4. Stratton, B. J. Determining Flame Height And Flame Pulsation Frequency And Estimating Heat Release Rate From 3D Flame Reconstruction University of Canterbury, Christchurch, New Zealand, 2005.