Investigating the Composition and Physical Properties of Sporopollenin Saint Anselm College, Department of Chemistry Nancy Nguyen and George Parodi # **Objectives** - Build spectral library for different samples of pollen using Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) Spectroscopy - Determine how pollen species differ in their spectra - Investigate the structure of sporopollenin # Previous Work - Using FT-IR-PAS, approximately 100 measurements were taken from samples comprising five families and ten species.¹ - Principal component analysis and cluster analysis were used to examine the similarities and differences in the spectra of differing species. - The library correctly identified the pollen samples 100% of the time at the family level but only 99% at the species level. ### References 1. Cassidy, J., Thesis. 2015; pp 1-23. # Results Figure 1: ATR-FTIR for untreated, BHS, and AHS Ragweed | | Significant peaks in each region | | | |-------------|--|--|---| | | 4000 cm ⁻¹ – 2000 cm ⁻¹ | 2000 cm ⁻¹ – 1000 cm ⁻¹ | 1000 cm ⁻¹ – 700 cm ⁻¹ | | Ragweed | 3320.37 cm ⁻¹
2924.75 cm ⁻¹
2854.27 cm ⁻¹
2360.47 cm ⁻¹
2329.07 cm ⁻¹ | 1734.99 cm ⁻¹
1667.33 cm ⁻¹
1515.97 cm ⁻¹
1438.94 cm ⁻¹
1377.02 cm ⁻¹
1282.80 cm ⁻¹
1241.83 cm ⁻¹
1169.96 cm ⁻¹
1098.99 cm ⁻¹ | 993.77 cm ⁻¹
834.11 cm ⁻¹
649.61 cm ⁻¹ | | BHS Ragweed | 2924.63 cm ⁻¹
2854.00 cm ⁻¹
2356.02 cm ⁻¹
2334.12 cm ⁻¹ | 1660.95 cm ⁻¹
1561.07 cm ⁻¹
1440.33 cm ⁻¹
1053.06 cm ⁻¹ | 880.19 cm ⁻¹
865.02 cm ⁻¹
659.69 cm ⁻¹ | | AHS Ragweed | | | 987.65 cm ⁻¹
885.65 cm ⁻¹
646.67 cm ⁻¹ | Table 1: Significant Peaks in Spectra for untreated, BHS, and AHS Ragweed # **Experimental** - Pollen grains were washed in ethanol then put in a 6% v/v solution of NaOH for six hours at 80°C. The solution was filtered. - The remaining pollen grains were placed a 6% v/v solution of NaOH for six hours at 80°C for the second time. The solution was filtered and then placed in an overnight oven to dry at approximately 60°C. - The dried Base Hydrolyzed Sporopollenin (BHS) was suspended in 85% phosphoric acid at 80°C for a week then filtered. - The Acid Hydrolyzed Sporopollenin (AHS) was then washed with water, ethanol, 2M HCl, and 2 M NaOH. - Immediately after the completion of the BHS and AHS steps, spectra were taken of the sporopollenins by FTIR-PAS and ATR-FTIR. ## Discussion - Observations were consistent with previous study of sporopollenin extracted from ragweed - Peaks represent the lost of nucleic acids, proteins, and amino acids that existed within the inner layer as the pollens were exposed to acid/base chemistry - Peaks were not yet specifically identified because of sporopollenin's complex structure